Gravity
$t$ | $\mathrm{s}$ | time |
$T$ | $\mathrm{s}$ | period of circulation |
$a$ | $\mathrm{m}$ | half-axis of a planet |
$A$ | $\mathrm{m^2}$ | swept area |
$F_G$ | $\mathrm{N}$ | weight force |
$m$ | $\mathrm{kg}$ | mass |
$m_g$ | $\mathrm{kg}$ | mass of the earth |
$f$ | $\mathrm{m^3/kg\, s^2}$ | gravitational constant |
$r$ | $\mathrm{m}$ | radius, distance between two pointmasses |
$e$ | unit vector | |
$g$ | $\mathrm{m/s^2}$ | gravitational acceleration |
$\phi$ | $\mathrm{m^2/s^2}$ | gravitational potential |
$W$ | $\mathrm{J}$ | work |
$E$ | $\mathrm{J}$ | energy |
Kepler’s Laws of Planetary Motion
Second law of Kepler
$$ \frac{\Delta A}{\Delta t} = \mathrm{const.} $$
Third law of Kepler
$$ \frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3} $$
Newton’s Law of Gravity
$$ \vec{F}_G = – f \, \frac{m_1 \, m_2}{r^2} \, \vec{e}_r \qquad
f = 6.673 \cdot 10^{-11} \,\frac{N\,m^2}{kg^2} $$
Condition: | $ r \leq r_E $ |
$$ g = – f \, \frac{ m_E }{ r^2 } \, \vec{e}_r $$
Lifting Work and Potential Energy
$$ W = – f \, m_E \, m_K \, \left( \frac{1}{r_2} – \frac{1}{r_1} \right) \qquad
W_M = – f \, \frac{m_E}{r} \, m $$
$$ W = \phi \, m \qquad
\phi = – f \, \frac{m_E}{r} \qquad
W = m \, ( \phi_2 – \phi_2 ) $$
$$ \phi = – \int\limits_\infty^r \! \vec{g}(r) \;\mathrm{d}\vec{r} \qquad
\nabla \phi = – \vec{E} $$
Power | Work and Energy |